This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345548 #6 Aug 05 2021 15:19:25 %S A345548 859,861,896,903,922,929,935,939,959,966,971,973,978,985,992,997,999, %T A345548 1004,1009,1011,1016,1018,1020,1022,1023,1027,1029,1030,1034,1035, %U A345548 1036,1037,1041,1046,1048,1055,1056,1059,1060,1062,1063,1064,1065,1066,1067,1071 %N A345548 Numbers that are the sum of nine cubes in nine or more ways. %H A345548 Sean A. Irvine, <a href="/A345548/b345548.txt">Table of n, a(n) for n = 1..10000</a> %e A345548 861 is a term because 861 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3. %o A345548 (Python) %o A345548 from itertools import combinations_with_replacement as cwr %o A345548 from collections import defaultdict %o A345548 keep = defaultdict(lambda: 0) %o A345548 power_terms = [x**3 for x in range(1, 1000)] %o A345548 for pos in cwr(power_terms, 9): %o A345548 tot = sum(pos) %o A345548 keep[tot] += 1 %o A345548 rets = sorted([k for k, v in keep.items() if v >= 9]) %o A345548 for x in range(len(rets)): %o A345548 print(rets[x]) %Y A345548 Cf. A345539, A345547, A345549, A345557, A345593, A345801. %K A345548 nonn %O A345548 1,1 %A A345548 _David Consiglio, Jr._, Jun 20 2021