This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345549 #6 Aug 05 2021 15:19:30 %S A345549 966,971,978,985,992,1004,1011,1018,1022,1048,1055,1056,1062,1063, %T A345549 1074,1076,1078,1081,1083,1085,1088,1092,1093,1095,1097,1098,1100, %U A345549 1102,1104,1107,1109,1111,1112,1114,1117,1118,1119,1121,1123,1124,1126,1128,1130,1133 %N A345549 Numbers that are the sum of nine cubes in ten or more ways. %H A345549 Sean A. Irvine, <a href="/A345549/b345549.txt">Table of n, a(n) for n = 1..10000</a> %e A345549 971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3. %o A345549 (Python) %o A345549 from itertools import combinations_with_replacement as cwr %o A345549 from collections import defaultdict %o A345549 keep = defaultdict(lambda: 0) %o A345549 power_terms = [x**3 for x in range(1, 1000)] %o A345549 for pos in cwr(power_terms, 9): %o A345549 tot = sum(pos) %o A345549 keep[tot] += 1 %o A345549 rets = sorted([k for k, v in keep.items() if v >= 10]) %o A345549 for x in range(len(rets)): %o A345549 print(rets[x]) %Y A345549 Cf. A345540, A345548, A345558, A345594, A345802, A346803. %K A345549 nonn %O A345549 1,1 %A A345549 _David Consiglio, Jr._, Jun 20 2021