cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345549 Numbers that are the sum of nine cubes in ten or more ways.

This page as a plain text file.
%I A345549 #6 Aug 05 2021 15:19:30
%S A345549 966,971,978,985,992,1004,1011,1018,1022,1048,1055,1056,1062,1063,
%T A345549 1074,1076,1078,1081,1083,1085,1088,1092,1093,1095,1097,1098,1100,
%U A345549 1102,1104,1107,1109,1111,1112,1114,1117,1118,1119,1121,1123,1124,1126,1128,1130,1133
%N A345549 Numbers that are the sum of nine cubes in ten or more ways.
%H A345549 Sean A. Irvine, <a href="/A345549/b345549.txt">Table of n, a(n) for n = 1..10000</a>
%e A345549 971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.
%o A345549 (Python)
%o A345549 from itertools import combinations_with_replacement as cwr
%o A345549 from collections import defaultdict
%o A345549 keep = defaultdict(lambda: 0)
%o A345549 power_terms = [x**3 for x in range(1, 1000)]
%o A345549 for pos in cwr(power_terms, 9):
%o A345549     tot = sum(pos)
%o A345549     keep[tot] += 1
%o A345549     rets = sorted([k for k, v in keep.items() if v >= 10])
%o A345549     for x in range(len(rets)):
%o A345549         print(rets[x])
%Y A345549 Cf. A345540, A345548, A345558, A345594, A345802, A346803.
%K A345549 nonn
%O A345549 1,1
%A A345549 _David Consiglio, Jr._, Jun 20 2021