This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345551 #6 Aug 05 2021 15:16:41 %S A345551 197,225,232,239,246,251,253,258,260,265,267,272,277,279,281,284,286, %T A345551 288,291,293,295,298,300,302,303,305,307,309,310,312,314,316,317,319, %U A345551 321,323,324,326,328,329,330,335,336,338,340,342,343,344,345,347,349,351 %N A345551 Numbers that are the sum of ten cubes in three or more ways. %H A345551 Sean A. Irvine, <a href="/A345551/b345551.txt">Table of n, a(n) for n = 1..10000</a> %e A345551 225 is a term because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. %o A345551 (Python) %o A345551 from itertools import combinations_with_replacement as cwr %o A345551 from collections import defaultdict %o A345551 keep = defaultdict(lambda: 0) %o A345551 power_terms = [x**3 for x in range(1, 1000)] %o A345551 for pos in cwr(power_terms, 10): %o A345551 tot = sum(pos) %o A345551 keep[tot] += 1 %o A345551 rets = sorted([k for k, v in keep.items() if v >= 3]) %o A345551 for x in range(len(rets)): %o A345551 print(rets[x]) %Y A345551 Cf. A345510, A345542, A345550, A345552, A345596, A345805. %K A345551 nonn %O A345551 1,1 %A A345551 _David Consiglio, Jr._, Jun 20 2021