This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345552 #6 Aug 05 2021 15:16:46 %S A345552 225,232,251,258,265,272,284,286,288,291,307,310,314,321,323,328,342, %T A345552 347,349,356,363,366,373,375,377,380,382,384,389,391,398,399,401,403, %U A345552 405,408,410,412,414,415,417,419,421,422,424,427,429,434,436,438,440,441 %N A345552 Numbers that are the sum of ten cubes in four or more ways. %H A345552 Sean A. Irvine, <a href="/A345552/b345552.txt">Table of n, a(n) for n = 1..10000</a> %e A345552 232 is a term because 232 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. %o A345552 (Python) %o A345552 from itertools import combinations_with_replacement as cwr %o A345552 from collections import defaultdict %o A345552 keep = defaultdict(lambda: 0) %o A345552 power_terms = [x**3 for x in range(1, 1000)] %o A345552 for pos in cwr(power_terms, 10): %o A345552 tot = sum(pos) %o A345552 keep[tot] += 1 %o A345552 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345552 for x in range(len(rets)): %o A345552 print(rets[x]) %Y A345552 Cf. A345543, A345551, A345553, A345597, A345806. %K A345552 nonn %O A345552 1,1 %A A345552 _David Consiglio, Jr._, Jun 20 2021