This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345554 #6 Aug 05 2021 15:16:53 %S A345554 436,440,447,466,473,477,480,492,499,503,506,508,510,513,515,518,525, %T A345554 527,529,532,534,536,538,539,541,551,553,560,562,564,567,569,571,577, %U A345554 581,584,588,590,595,597,599,601,602,603,604,606,607,608,613,614,616,618 %N A345554 Numbers that are the sum of ten cubes in six or more ways. %H A345554 Sean A. Irvine, <a href="/A345554/b345554.txt">Table of n, a(n) for n = 1..10000</a> %e A345554 440 is a term because 440 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3. %o A345554 (Python) %o A345554 from itertools import combinations_with_replacement as cwr %o A345554 from collections import defaultdict %o A345554 keep = defaultdict(lambda: 0) %o A345554 power_terms = [x**3 for x in range(1, 1000)] %o A345554 for pos in cwr(power_terms, 10): %o A345554 tot = sum(pos) %o A345554 keep[tot] += 1 %o A345554 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345554 for x in range(len(rets)): %o A345554 print(rets[x]) %Y A345554 Cf. A345545, A345553, A345555, A345599, A345808, A346805. %K A345554 nonn %O A345554 1,1 %A A345554 _David Consiglio, Jr._, Jun 20 2021