This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345555 #6 Aug 05 2021 15:16:57 %S A345555 440,473,499,506,525,532,534,567,571,584,588,597,599,604,606,623,625, %T A345555 627,630,632,637,639,640,644,651,656,658,660,662,663,665,669,670,673, %U A345555 677,680,682,684,688,689,691,693,695,696,697,699,701,702,704,707,708,714 %N A345555 Numbers that are the sum of ten cubes in seven or more ways. %H A345555 Sean A. Irvine, <a href="/A345555/b345555.txt">Table of n, a(n) for n = 1..10000</a> %e A345555 473 is a term because 473 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. %o A345555 (Python) %o A345555 from itertools import combinations_with_replacement as cwr %o A345555 from collections import defaultdict %o A345555 keep = defaultdict(lambda: 0) %o A345555 power_terms = [x**3 for x in range(1, 1000)] %o A345555 for pos in cwr(power_terms, 10): %o A345555 tot = sum(pos) %o A345555 keep[tot] += 1 %o A345555 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345555 for x in range(len(rets)): %o A345555 print(rets[x]) %Y A345555 Cf. A345546, A345554, A345556, A345600, A345809, A346806. %K A345555 nonn %O A345555 1,1 %A A345555 _David Consiglio, Jr._, Jun 20 2021