cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345556 Numbers that are the sum of ten cubes in eight or more ways.

This page as a plain text file.
%I A345556 #6 Aug 05 2021 15:17:00
%S A345556 623,625,630,632,644,651,658,662,665,677,684,688,695,697,699,708,714,
%T A345556 715,721,723,725,728,730,733,734,736,740,745,747,749,751,752,754,756,
%U A345556 757,758,759,760,764,766,769,771,773,775,776,777,778,780,782,785,786,787
%N A345556 Numbers that are the sum of ten cubes in eight or more ways.
%H A345556 Sean A. Irvine, <a href="/A345556/b345556.txt">Table of n, a(n) for n = 1..10000</a>
%e A345556 625 is a term because 625 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
%o A345556 (Python)
%o A345556 from itertools import combinations_with_replacement as cwr
%o A345556 from collections import defaultdict
%o A345556 keep = defaultdict(lambda: 0)
%o A345556 power_terms = [x**3 for x in range(1, 1000)]
%o A345556 for pos in cwr(power_terms, 10):
%o A345556     tot = sum(pos)
%o A345556     keep[tot] += 1
%o A345556     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345556     for x in range(len(rets)):
%o A345556         print(rets[x])
%Y A345556 Cf. A345547, A345555, A345557, A345601, A345810, A346807.
%K A345556 nonn
%O A345556 1,1
%A A345556 _David Consiglio, Jr._, Jun 20 2021