This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345556 #6 Aug 05 2021 15:17:00 %S A345556 623,625,630,632,644,651,658,662,665,677,684,688,695,697,699,708,714, %T A345556 715,721,723,725,728,730,733,734,736,740,745,747,749,751,752,754,756, %U A345556 757,758,759,760,764,766,769,771,773,775,776,777,778,780,782,785,786,787 %N A345556 Numbers that are the sum of ten cubes in eight or more ways. %H A345556 Sean A. Irvine, <a href="/A345556/b345556.txt">Table of n, a(n) for n = 1..10000</a> %e A345556 625 is a term because 625 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3. %o A345556 (Python) %o A345556 from itertools import combinations_with_replacement as cwr %o A345556 from collections import defaultdict %o A345556 keep = defaultdict(lambda: 0) %o A345556 power_terms = [x**3 for x in range(1, 1000)] %o A345556 for pos in cwr(power_terms, 10): %o A345556 tot = sum(pos) %o A345556 keep[tot] += 1 %o A345556 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A345556 for x in range(len(rets)): %o A345556 print(rets[x]) %Y A345556 Cf. A345547, A345555, A345557, A345601, A345810, A346807. %K A345556 nonn %O A345556 1,1 %A A345556 _David Consiglio, Jr._, Jun 20 2021