cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345558 Numbers that are the sum of ten cubes in ten or more ways.

This page as a plain text file.
%I A345558 #6 Aug 05 2021 15:17:09
%S A345558 721,754,756,771,782,792,797,806,808,819,832,834,845,847,848,850,860,
%T A345558 862,867,869,871,874,876,877,878,881,884,886,888,893,895,897,902,903,
%U A345558 904,906,907,909,910,911,912,914,916,917,918,919,921,923,925,929,930,932
%N A345558 Numbers that are the sum of ten cubes in ten or more ways.
%H A345558 Sean A. Irvine, <a href="/A345558/b345558.txt">Table of n, a(n) for n = 1..10000</a>
%e A345558 754 is a term because 754 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3.
%o A345558 (Python)
%o A345558 from itertools import combinations_with_replacement as cwr
%o A345558 from collections import defaultdict
%o A345558 keep = defaultdict(lambda: 0)
%o A345558 power_terms = [x**3 for x in range(1, 1000)]
%o A345558 for pos in cwr(power_terms, 10):
%o A345558     tot = sum(pos)
%o A345558     keep[tot] += 1
%o A345558     rets = sorted([k for k, v in keep.items() if v >= 10])
%o A345558     for x in range(len(rets)):
%o A345558         print(rets[x])
%Y A345558 Cf. A345549, A345557, A345603, A345812, A346808.
%K A345558 nonn
%O A345558 1,1
%A A345558 _David Consiglio, Jr._, Jun 20 2021