cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345559 Numbers that are the sum of six fourth powers in two or more ways.

This page as a plain text file.
%I A345559 #6 Jul 31 2021 18:04:58
%S A345559 261,276,291,341,356,421,516,531,596,771,885,900,965,1140,1361,1509,
%T A345559 1556,1571,1636,1811,2180,2596,2611,2661,2676,2691,2706,2721,2741,
%U A345559 2756,2771,2786,2836,2851,2916,2931,2946,2961,3011,3026,3091,3186,3201,3220,3266
%N A345559 Numbers that are the sum of six fourth powers in two or more ways.
%H A345559 Sean A. Irvine, <a href="/A345559/b345559.txt">Table of n, a(n) for n = 1..10000</a>
%e A345559 276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
%o A345559 (Python)
%o A345559 from itertools import combinations_with_replacement as cwr
%o A345559 from collections import defaultdict
%o A345559 keep = defaultdict(lambda: 0)
%o A345559 power_terms = [x**4 for x in range(1, 1000)]
%o A345559 for pos in cwr(power_terms, 6):
%o A345559     tot = sum(pos)
%o A345559     keep[tot] += 1
%o A345559     rets = sorted([k for k, v in keep.items() if v >= 2])
%o A345559     for x in range(len(rets)):
%o A345559         print(rets[x])
%Y A345559 Cf. A003340, A344238, A345507, A345511, A345560, A345568, A345814.
%K A345559 nonn
%O A345559 1,1
%A A345559 _David Consiglio, Jr._, Jun 20 2021