This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345562 #6 Jul 31 2021 18:05:10 %S A345562 15395,16610,18866,19235,19410,20996,21011,21251,21316,21331,21491, %T A345562 21620,23811,25091,29700,29715,29906,29955,30356,30995,31235,31266, %U A345562 31331,31506,32035,33651,33795,33891,35171,35411,35636,35796,35971,37811,37971,38051,38595 %N A345562 Numbers that are the sum of six fourth powers in five or more ways. %H A345562 Sean A. Irvine, <a href="/A345562/b345562.txt">Table of n, a(n) for n = 1..10000</a> %e A345562 16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4. %o A345562 (Python) %o A345562 from itertools import combinations_with_replacement as cwr %o A345562 from collections import defaultdict %o A345562 keep = defaultdict(lambda: 0) %o A345562 power_terms = [x**4 for x in range(1, 1000)] %o A345562 for pos in cwr(power_terms, 6): %o A345562 tot = sum(pos) %o A345562 keep[tot] += 1 %o A345562 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345562 for x in range(len(rets)): %o A345562 print(rets[x]) %Y A345562 Cf. A344358, A345514, A345561, A345563, A345571, A345719, A345817. %K A345562 nonn %O A345562 1,1 %A A345562 _David Consiglio, Jr._, Jun 20 2021