This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345563 #6 Jul 31 2021 18:05:16 %S A345563 21251,37811,38051,43251,43571,43875,44115,44531,45155,45651,45891, %T A345563 47411,47586,48276,49796,49971,52195,53235,53315,54131,56290,57395, %U A345563 57460,57570,58035,58500,59075,59330,59780,59795,59811,59860,60035,62180,62211,63971,66340 %N A345563 Numbers that are the sum of six fourth powers in six or more ways. %H A345563 Sean A. Irvine, <a href="/A345563/b345563.txt">Table of n, a(n) for n = 1..10000</a> %e A345563 37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4. %o A345563 (Python) %o A345563 from itertools import combinations_with_replacement as cwr %o A345563 from collections import defaultdict %o A345563 keep = defaultdict(lambda: 0) %o A345563 power_terms = [x**4 for x in range(1, 1000)] %o A345563 for pos in cwr(power_terms, 6): %o A345563 tot = sum(pos) %o A345563 keep[tot] += 1 %o A345563 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345563 for x in range(len(rets)): %o A345563 print(rets[x]) %Y A345563 Cf. A344940, A345515, A345562, A345564, A345572, A345720, A345818. %K A345563 nonn %O A345563 1,1 %A A345563 _David Consiglio, Jr._, Jun 20 2021