cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345563 Numbers that are the sum of six fourth powers in six or more ways.

This page as a plain text file.
%I A345563 #6 Jul 31 2021 18:05:16
%S A345563 21251,37811,38051,43251,43571,43875,44115,44531,45155,45651,45891,
%T A345563 47411,47586,48276,49796,49971,52195,53235,53315,54131,56290,57395,
%U A345563 57460,57570,58035,58500,59075,59330,59780,59795,59811,59860,60035,62180,62211,63971,66340
%N A345563 Numbers that are the sum of six fourth powers in six or more ways.
%H A345563 Sean A. Irvine, <a href="/A345563/b345563.txt">Table of n, a(n) for n = 1..10000</a>
%e A345563 37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
%o A345563 (Python)
%o A345563 from itertools import combinations_with_replacement as cwr
%o A345563 from collections import defaultdict
%o A345563 keep = defaultdict(lambda: 0)
%o A345563 power_terms = [x**4 for x in range(1, 1000)]
%o A345563 for pos in cwr(power_terms, 6):
%o A345563     tot = sum(pos)
%o A345563     keep[tot] += 1
%o A345563     rets = sorted([k for k, v in keep.items() if v >= 6])
%o A345563     for x in range(len(rets)):
%o A345563         print(rets[x])
%Y A345563 Cf. A344940, A345515, A345562, A345564, A345572, A345720, A345818.
%K A345563 nonn
%O A345563 1,1
%A A345563 _David Consiglio, Jr._, Jun 20 2021