This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345566 #6 Jul 31 2021 18:05:28 %S A345566 88595,122915,132546,134931,144835,146450,151556,161475,162355,162755, %T A345566 170275,171555,171795,172036,172835,173075,177380,177716,180770, %U A345566 183540,183620,184835,185315,185555,187700,187715,190100,190211,193635,195380,195780,196435 %N A345566 Numbers that are the sum of six fourth powers in nine or more ways. %H A345566 Sean A. Irvine, <a href="/A345566/b345566.txt">Table of n, a(n) for n = 1..10000</a> %e A345566 122915 is a term because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4. %o A345566 (Python) %o A345566 from itertools import combinations_with_replacement as cwr %o A345566 from collections import defaultdict %o A345566 keep = defaultdict(lambda: 0) %o A345566 power_terms = [x**4 for x in range(1, 1000)] %o A345566 for pos in cwr(power_terms, 6): %o A345566 tot = sum(pos) %o A345566 keep[tot] += 1 %o A345566 rets = sorted([k for k, v in keep.items() if v >= 9]) %o A345566 for x in range(len(rets)): %o A345566 print(rets[x]) %Y A345566 Cf. A341891, A345518, A345565, A345567, A345575, A345723, A345821. %K A345566 nonn %O A345566 1,1 %A A345566 _David Consiglio, Jr._, Jun 20 2021