This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345570 #6 Jul 31 2021 17:57:57 %S A345570 2932,4147,4212,4387,5427,5602,5667,6627,6642,6692,6707,6772,6817, %T A345570 6822,6837,6852,6867,6882,6947,7012,7122,7251,7316,7491,7747,7857, %U A345570 7922,7987,8052,8097,8162,8227,8402,8467,8532,8707,8787,8962,9027,9092,9157,9172,9202 %N A345570 Numbers that are the sum of seven fourth powers in four or more ways. %H A345570 Sean A. Irvine, <a href="/A345570/b345570.txt">Table of n, a(n) for n = 1..10000</a> %e A345570 4147 is a term because 4147 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4. %o A345570 (Python) %o A345570 from itertools import combinations_with_replacement as cwr %o A345570 from collections import defaultdict %o A345570 keep = defaultdict(lambda: 0) %o A345570 power_terms = [x**4 for x in range(1, 1000)] %o A345570 for pos in cwr(power_terms, 7): %o A345570 tot = sum(pos) %o A345570 keep[tot] += 1 %o A345570 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345570 for x in range(len(rets)): %o A345570 print(rets[x]) %Y A345570 Cf. A345522, A345561, A345569, A345571, A345579, A345607, A345826. %K A345570 nonn %O A345570 1,1 %A A345570 _David Consiglio, Jr._, Jun 20 2021