This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345571 #6 Jul 31 2021 17:58:01 %S A345571 6642,6707,6772,6882,6947,7922,7987,8227,8962,9267,9507,9747,10116, %T A345571 10291,10722,10787,10867,10932,10962,11331,11411,11571,12676,12851, %U A345571 12916,13187,13252,13891,13956,14131,14211,14707,14772,14802,14917,14932,14947,15012,15092 %N A345571 Numbers that are the sum of seven fourth powers in five or more ways. %H A345571 Sean A. Irvine, <a href="/A345571/b345571.txt">Table of n, a(n) for n = 1..10000</a> %e A345571 6707 is a term because 6707 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4. %o A345571 (Python) %o A345571 from itertools import combinations_with_replacement as cwr %o A345571 from collections import defaultdict %o A345571 keep = defaultdict(lambda: 0) %o A345571 power_terms = [x**4 for x in range(1, 1000)] %o A345571 for pos in cwr(power_terms, 7): %o A345571 tot = sum(pos) %o A345571 keep[tot] += 1 %o A345571 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345571 for x in range(len(rets)): %o A345571 print(rets[x]) %Y A345571 Cf. A345523, A345562, A345570, A345572, A345580, A345608, A345827. %K A345571 nonn %O A345571 1,1 %A A345571 _David Consiglio, Jr._, Jun 20 2021