cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345571 Numbers that are the sum of seven fourth powers in five or more ways.

This page as a plain text file.
%I A345571 #6 Jul 31 2021 17:58:01
%S A345571 6642,6707,6772,6882,6947,7922,7987,8227,8962,9267,9507,9747,10116,
%T A345571 10291,10722,10787,10867,10932,10962,11331,11411,11571,12676,12851,
%U A345571 12916,13187,13252,13891,13956,14131,14211,14707,14772,14802,14917,14932,14947,15012,15092
%N A345571 Numbers that are the sum of seven fourth powers in five or more ways.
%H A345571 Sean A. Irvine, <a href="/A345571/b345571.txt">Table of n, a(n) for n = 1..10000</a>
%e A345571 6707 is a term because 6707 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
%o A345571 (Python)
%o A345571 from itertools import combinations_with_replacement as cwr
%o A345571 from collections import defaultdict
%o A345571 keep = defaultdict(lambda: 0)
%o A345571 power_terms = [x**4 for x in range(1, 1000)]
%o A345571 for pos in cwr(power_terms, 7):
%o A345571     tot = sum(pos)
%o A345571     keep[tot] += 1
%o A345571     rets = sorted([k for k, v in keep.items() if v >= 5])
%o A345571     for x in range(len(rets)):
%o A345571         print(rets[x])
%Y A345571 Cf. A345523, A345562, A345570, A345572, A345580, A345608, A345827.
%K A345571 nonn
%O A345571 1,1
%A A345571 _David Consiglio, Jr._, Jun 20 2021