cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345572 Numbers that are the sum of seven fourth powers in six or more ways.

This page as a plain text file.
%I A345572 #6 Jul 31 2021 17:58:05
%S A345572 10787,15396,15411,15586,15651,16611,16626,16676,16691,16866,17347,
%T A345572 17956,17971,18867,19156,19236,19251,19411,19426,19491,19666,20035,
%U A345572 20706,20771,21012,21187,21252,21267,21332,21397,21412,21442,21492,21507,21572,21621,21636
%N A345572 Numbers that are the sum of seven fourth powers in six or more ways.
%H A345572 Sean A. Irvine, <a href="/A345572/b345572.txt">Table of n, a(n) for n = 1..10000</a>
%e A345572 15396 is a term because 15396 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 1^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 9^4 + 9^4.
%o A345572 (Python)
%o A345572 from itertools import combinations_with_replacement as cwr
%o A345572 from collections import defaultdict
%o A345572 keep = defaultdict(lambda: 0)
%o A345572 power_terms = [x**4 for x in range(1, 1000)]
%o A345572 for pos in cwr(power_terms, 7):
%o A345572     tot = sum(pos)
%o A345572     keep[tot] += 1
%o A345572     rets = sorted([k for k, v in keep.items() if v >= 6])
%o A345572     for x in range(len(rets)):
%o A345572         print(rets[x])
%Y A345572 Cf. A345524, A345563, A345571, A345573, A345581, A345609, A345828.
%K A345572 nonn
%O A345572 1,1
%A A345572 _David Consiglio, Jr._, Jun 20 2021