This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345573 #6 Jul 31 2021 17:58:07 %S A345573 16691,17347,17971,19491,20706,21252,21267,21332,21507,21636,21876, %T A345573 21956,22547,22612,23156,23587,23652,23827,23892,24436,25107,25347, %U A345573 25427,25716,25971,26051,27812,29092,29187,29332,29427,29442,29636,29701,29716,29956,29971 %N A345573 Numbers that are the sum of seven fourth powers in seven or more ways. %H A345573 Sean A. Irvine, <a href="/A345573/b345573.txt">Table of n, a(n) for n = 1..10000</a> %e A345573 17347 is a term because 17347 = 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 + 9^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4. %o A345573 (Python) %o A345573 from itertools import combinations_with_replacement as cwr %o A345573 from collections import defaultdict %o A345573 keep = defaultdict(lambda: 0) %o A345573 power_terms = [x**4 for x in range(1, 1000)] %o A345573 for pos in cwr(power_terms, 7): %o A345573 tot = sum(pos) %o A345573 keep[tot] += 1 %o A345573 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345573 for x in range(len(rets)): %o A345573 print(rets[x]) %Y A345573 Cf. A345525, A345564, A345572, A345574, A345582, A345629, A345829. %K A345573 nonn %O A345573 1,1 %A A345573 _David Consiglio, Jr._, Jun 20 2021