cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345578 Numbers that are the sum of eight fourth powers in three or more ways.

This page as a plain text file.
%I A345578 #6 Jul 31 2021 17:51:30
%S A345578 518,2678,2693,2708,2738,2758,2773,2838,2853,2868,2883,2918,2933,2948,
%T A345578 2998,3013,3078,3108,3123,3173,3188,3253,3302,3317,3363,3382,3428,
%U A345578 3477,3492,3542,3557,3622,3732,3778,3797,3893,3926,3953,3973,3988,4018,4053,4101
%N A345578 Numbers that are the sum of eight fourth powers in three or more ways.
%H A345578 Sean A. Irvine, <a href="/A345578/b345578.txt">Table of n, a(n) for n = 1..10000</a>
%e A345578 2678 is a term because 2678 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
%o A345578 (Python)
%o A345578 from itertools import combinations_with_replacement as cwr
%o A345578 from collections import defaultdict
%o A345578 keep = defaultdict(lambda: 0)
%o A345578 power_terms = [x**4 for x in range(1, 1000)]
%o A345578 for pos in cwr(power_terms, 8):
%o A345578     tot = sum(pos)
%o A345578     keep[tot] += 1
%o A345578     rets = sorted([k for k, v in keep.items() if v >= 3])
%o A345578     for x in range(len(rets)):
%o A345578         print(rets[x])
%Y A345578 Cf. A345533, A345569, A345577, A345579, A345587, A345611, A345835.
%K A345578 nonn
%O A345578 1,1
%A A345578 _David Consiglio, Jr._, Jun 20 2021