cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345579 Numbers that are the sum of eight fourth powers in four or more ways.

This page as a plain text file.
%I A345579 #6 Jul 31 2021 17:51:33
%S A345579 2933,2948,3013,3173,3188,3557,4148,4163,4213,4228,4293,4388,4403,
%T A345579 4453,4468,4643,4772,4837,4883,5012,5123,5188,5203,5268,5333,5363,
%U A345579 5378,5398,5428,5443,5508,5538,5573,5603,5618,5668,5683,5733,5748,5858,5923,6052,6163
%N A345579 Numbers that are the sum of eight fourth powers in four or more ways.
%H A345579 Sean A. Irvine, <a href="/A345579/b345579.txt">Table of n, a(n) for n = 1..10000</a>
%e A345579 2948 is a term because 2948 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
%o A345579 (Python)
%o A345579 from itertools import combinations_with_replacement as cwr
%o A345579 from collections import defaultdict
%o A345579 keep = defaultdict(lambda: 0)
%o A345579 power_terms = [x**4 for x in range(1, 1000)]
%o A345579 for pos in cwr(power_terms, 8):
%o A345579     tot = sum(pos)
%o A345579     keep[tot] += 1
%o A345579     rets = sorted([k for k, v in keep.items() if v >= 4])
%o A345579     for x in range(len(rets)):
%o A345579         print(rets[x])
%Y A345579 Cf. A345534, A345570, A345578, A345580, A345588, A345612, A345836.
%K A345579 nonn
%O A345579 1,1
%A A345579 _David Consiglio, Jr._, Jun 20 2021