This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345581 #6 Jul 31 2021 17:51:40 %S A345581 6723,6788,6853,6898,6963,7028,7938,8003,8068,8178,8243,8308,8483, %T A345581 8963,9043,9173,9218,9283,9348,9413,9493,9523,9668,9763,9828,10003, %U A345581 10132,10258,10277,10307,10372,10628,10708,10738,10788,10803,10868,10933,10948,10978 %N A345581 Numbers that are the sum of eight fourth powers in six or more ways. %H A345581 Sean A. Irvine, <a href="/A345581/b345581.txt">Table of n, a(n) for n = 1..10000</a> %e A345581 6788 is a term because 6788 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4. %o A345581 (Python) %o A345581 from itertools import combinations_with_replacement as cwr %o A345581 from collections import defaultdict %o A345581 keep = defaultdict(lambda: 0) %o A345581 power_terms = [x**4 for x in range(1, 1000)] %o A345581 for pos in cwr(power_terms, 8): %o A345581 tot = sum(pos) %o A345581 keep[tot] += 1 %o A345581 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345581 for x in range(len(rets)): %o A345581 print(rets[x]) %Y A345581 Cf. A345536, A345572, A345580, A345582, A345590, A345614, A345838. %K A345581 nonn %O A345581 1,1 %A A345581 _David Consiglio, Jr._, Jun 20 2021