cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345588 Numbers that are the sum of nine fourth powers in four or more ways.

This page as a plain text file.
%I A345588 #6 Jul 31 2021 17:38:50
%S A345588 2854,2919,2934,2949,2964,3014,3029,3094,3159,3174,3189,3204,3254,
%T A345588 3269,3429,3444,3558,3573,3638,3798,3813,3974,4034,4134,4149,4164,
%U A345588 4179,4182,4209,4214,4229,4244,4274,4294,4309,4374,4389,4404,4419,4439,4454,4469,4484
%N A345588 Numbers that are the sum of nine fourth powers in four or more ways.
%H A345588 Sean A. Irvine, <a href="/A345588/b345588.txt">Table of n, a(n) for n = 1..10000</a>
%e A345588 2919 is a term because 2919 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4.
%o A345588 (Python)
%o A345588 from itertools import combinations_with_replacement as cwr
%o A345588 from collections import defaultdict
%o A345588 keep = defaultdict(lambda: 0)
%o A345588 power_terms = [x**4 for x in range(1, 1000)]
%o A345588 for pos in cwr(power_terms, 9):
%o A345588     tot = sum(pos)
%o A345588     keep[tot] += 1
%o A345588     rets = sorted([k for k, v in keep.items() if v >= 4])
%o A345588     for x in range(len(rets)):
%o A345588         print(rets[x])
%Y A345588 Cf. A345543, A345579, A345587, A345589, A345597, A345621, A345846.
%K A345588 nonn
%O A345588 1,1
%A A345588 _David Consiglio, Jr._, Jun 20 2021