This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345588 #6 Jul 31 2021 17:38:50 %S A345588 2854,2919,2934,2949,2964,3014,3029,3094,3159,3174,3189,3204,3254, %T A345588 3269,3429,3444,3558,3573,3638,3798,3813,3974,4034,4134,4149,4164, %U A345588 4179,4182,4209,4214,4229,4244,4274,4294,4309,4374,4389,4404,4419,4439,4454,4469,4484 %N A345588 Numbers that are the sum of nine fourth powers in four or more ways. %H A345588 Sean A. Irvine, <a href="/A345588/b345588.txt">Table of n, a(n) for n = 1..10000</a> %e A345588 2919 is a term because 2919 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4. %o A345588 (Python) %o A345588 from itertools import combinations_with_replacement as cwr %o A345588 from collections import defaultdict %o A345588 keep = defaultdict(lambda: 0) %o A345588 power_terms = [x**4 for x in range(1, 1000)] %o A345588 for pos in cwr(power_terms, 9): %o A345588 tot = sum(pos) %o A345588 keep[tot] += 1 %o A345588 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345588 for x in range(len(rets)): %o A345588 print(rets[x]) %Y A345588 Cf. A345543, A345579, A345587, A345589, A345597, A345621, A345846. %K A345588 nonn %O A345588 1,1 %A A345588 _David Consiglio, Jr._, Jun 20 2021