cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345596 Numbers that are the sum of ten fourth powers in three or more ways.

This page as a plain text file.
%I A345596 #6 Jul 31 2021 17:25:42
%S A345596 520,535,550,600,615,680,775,790,855,1030,1144,1159,1224,1365,1380,
%T A345596 1399,1445,1540,1555,1605,1620,1635,1685,1700,1768,1795,1815,1830,
%U A345596 1860,1875,1895,1989,2070,2164,2229,2244,2439,2485,2580,2595,2645,2660,2675,2680,2695
%N A345596 Numbers that are the sum of ten fourth powers in three or more ways.
%H A345596 Sean A. Irvine, <a href="/A345596/b345596.txt">Table of n, a(n) for n = 1..10000</a>
%e A345596 535 is a term because 535 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
%o A345596 (Python)
%o A345596 from itertools import combinations_with_replacement as cwr
%o A345596 from collections import defaultdict
%o A345596 keep = defaultdict(lambda: 0)
%o A345596 power_terms = [x**4 for x in range(1, 1000)]
%o A345596 for pos in cwr(power_terms, 10):
%o A345596     tot = sum(pos)
%o A345596     keep[tot] += 1
%o A345596     rets = sorted([k for k, v in keep.items() if v >= 3])
%o A345596     for x in range(len(rets)):
%o A345596         print(rets[x])
%Y A345596 Cf. A345551, A345587, A345595, A345597, A345635, A345855.
%K A345596 nonn
%O A345596 1,1
%A A345596 _David Consiglio, Jr._, Jun 20 2021