This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345597 #6 Jul 31 2021 17:25:47 %S A345597 1620,2660,2725,2740,2835,2855,2870,2900,2915,2920,2935,2950,2965, %T A345597 2980,3000,3015,3030,3045,3095,3110,3160,3175,3190,3205,3220,3240, %U A345597 3255,3270,3285,3335,3350,3415,3430,3445,3460,3479,3510,3525,3544,3559,3574,3589,3639 %N A345597 Numbers that are the sum of ten fourth powers in four or more ways. %H A345597 Sean A. Irvine, <a href="/A345597/b345597.txt">Table of n, a(n) for n = 1..10000</a> %e A345597 2660 is a term because 2660 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4. %o A345597 (Python) %o A345597 from itertools import combinations_with_replacement as cwr %o A345597 from collections import defaultdict %o A345597 keep = defaultdict(lambda: 0) %o A345597 power_terms = [x**4 for x in range(1, 1000)] %o A345597 for pos in cwr(power_terms, 10): %o A345597 tot = sum(pos) %o A345597 keep[tot] += 1 %o A345597 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345597 for x in range(len(rets)): %o A345597 print(rets[x]) %Y A345597 Cf. A345552, A345588, A345596, A345598, A345636, A345856. %K A345597 nonn %O A345597 1,1 %A A345597 _David Consiglio, Jr._, Jun 20 2021