This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345598 #6 Jul 31 2021 17:25:51 %S A345598 2935,3110,3175,3190,3205,3270,3445,3814,3940,4150,4165,4180,4195, %T A345598 4215,4230,4245,4260,4290,4310,4325,4375,4390,4405,4420,4435,4455, %U A345598 4470,4485,4500,4550,4565,4615,4630,4660,4675,4695,4725,4740,4774,4805,4854,4869,4870 %N A345598 Numbers that are the sum of ten fourth powers in five or more ways. %H A345598 Sean A. Irvine, <a href="/A345598/b345598.txt">Table of n, a(n) for n = 1..10000</a> %e A345598 3110 is a term because 3110 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4. %o A345598 (Python) %o A345598 from itertools import combinations_with_replacement as cwr %o A345598 from collections import defaultdict %o A345598 keep = defaultdict(lambda: 0) %o A345598 power_terms = [x**4 for x in range(1, 1000)] %o A345598 for pos in cwr(power_terms, 10): %o A345598 tot = sum(pos) %o A345598 keep[tot] += 1 %o A345598 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345598 for x in range(len(rets)): %o A345598 print(rets[x]) %Y A345598 Cf. A345553, A345589, A345597, A345599, A345637, A345857. %K A345598 nonn %O A345598 1,1 %A A345598 _David Consiglio, Jr._, Jun 20 2021