This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345608 #6 Jul 31 2021 16:25:18 %S A345608 6768576,6776120,7883668,8625376,8740709,10036201,10604054,12476826, %T A345608 12618493,13006575,13060213,13080706,13174250,13536416,13550162, %U A345608 13562501,13662500,14110656,14583968,15169276,15247994,16053313,16060683,16374218,16573507,16600001 %N A345608 Numbers that are the sum of seven fifth powers in five or more ways. %H A345608 Sean A. Irvine, <a href="/A345608/b345608.txt">Table of n, a(n) for n = 1..4721</a> %e A345608 6776120 is a term because 6776120 = 2^5 + 4^5 + 7^5 + 12^5 + 17^5 + 18^5 + 20^5 = 3^5 + 6^5 + 6^5 + 12^5 + 14^5 + 18^5 + 21^5 = 4^5 + 6^5 + 8^5 + 11^5 + 13^5 + 16^5 + 22^5 = 4^5 + 7^5 + 7^5 + 7^5 + 16^5 + 19^5 + 20^5 = 5^5 + 6^5 + 6^5 + 8^5 + 16^5 + 19^5 + 20^5. %o A345608 (Python) %o A345608 from itertools import combinations_with_replacement as cwr %o A345608 from collections import defaultdict %o A345608 keep = defaultdict(lambda: 0) %o A345608 power_terms = [x**5 for x in range(1, 1000)] %o A345608 for pos in cwr(power_terms, 7): %o A345608 tot = sum(pos) %o A345608 keep[tot] += 1 %o A345608 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345608 for x in range(len(rets)): %o A345608 print(rets[x]) %Y A345608 Cf. A345571, A345607, A345609, A345613, A345719, A346282. %K A345608 nonn %O A345608 1,1 %A A345608 _David Consiglio, Jr._, Jun 20 2021