This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345609 #8 Jul 31 2021 16:25:22 %S A345609 13562501,14583968,21555313,22057487,22066065,23089782,23345024, %T A345609 24217918,24401574,24855016,24952718,24993517,25052501,25385064, %U A345609 28608832,29558618,30653536,31613713,32559143,33005785,33533765,33635825,33828631,34267551,34268332,35431351 %N A345609 Numbers that are the sum of seven fifth powers in six or more ways. %H A345609 Sean A. Irvine, <a href="/A345609/b345609.txt">Table of n, a(n) for n = 1..10000</a> %e A345609 14583968 is a term because 14583968 = 1^5 + 4^5 + 14^5 + 16^5 + 19^5 + 21^5 + 23^5 = 2^5 + 4^5 + 14^5 + 14^5 + 20^5 + 22^5 + 22^5 = 4^5 + 5^5 + 10^5 + 15^5 + 20^5 + 21^5 + 23^5 = 6^5 + 8^5 + 9^5 + 15^5 + 15^5 + 20^5 + 25^5 = 6^5 + 8^5 + 14^5 + 14^5 + 14^5 + 16^5 + 26^5 = 6^5 + 10^5 + 12^5 + 12^5 + 16^5 + 16^5 + 26^5. %o A345609 (Python) %o A345609 from itertools import combinations_with_replacement as cwr %o A345609 from collections import defaultdict %o A345609 keep = defaultdict(lambda: 0) %o A345609 power_terms = [x**5 for x in range(1, 1000)] %o A345609 for pos in cwr(power_terms, 7): %o A345609 tot = sum(pos) %o A345609 keep[tot] += 1 %o A345609 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345609 for x in range(len(rets)): %o A345609 print(rets[x]) %Y A345609 Cf. A345572, A345608, A345614, A345629, A345720, A346283. %K A345609 nonn %O A345609 1,1 %A A345609 _David Consiglio, Jr._, Jun 20 2021