This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345611 #6 Jul 31 2021 16:17:02 %S A345611 52417,54518,69634,70954,84458,84489,84700,85481,87582,92233,101264, %T A345611 102890,112574,117225,119326,134473,143264,143442,143506,149781, %U A345611 151448,158719,159465,165634,166998,167029,167196,167240,168021,170122,174773,183804,184457 %N A345611 Numbers that are the sum of eight fifth powers in three or more ways. %H A345611 Sean A. Irvine, <a href="/A345611/b345611.txt">Table of n, a(n) for n = 1..10000</a> %e A345611 54518 is a term because 54518 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 7^5 + 7^5 + 7^5. %o A345611 (Python) %o A345611 from itertools import combinations_with_replacement as cwr %o A345611 from collections import defaultdict %o A345611 keep = defaultdict(lambda: 0) %o A345611 power_terms = [x**5 for x in range(1, 1000)] %o A345611 for pos in cwr(power_terms, 8): %o A345611 tot = sum(pos) %o A345611 keep[tot] += 1 %o A345611 rets = sorted([k for k, v in keep.items() if v >= 3]) %o A345611 for x in range(len(rets)): %o A345611 print(rets[x]) %Y A345611 Cf. A345578, A345606, A345610, A345612, A345620, A346328. %K A345611 nonn %O A345611 1,1 %A A345611 _David Consiglio, Jr._, Jun 20 2021