cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345611 Numbers that are the sum of eight fifth powers in three or more ways.

This page as a plain text file.
%I A345611 #6 Jul 31 2021 16:17:02
%S A345611 52417,54518,69634,70954,84458,84489,84700,85481,87582,92233,101264,
%T A345611 102890,112574,117225,119326,134473,143264,143442,143506,149781,
%U A345611 151448,158719,159465,165634,166998,167029,167196,167240,168021,170122,174773,183804,184457
%N A345611 Numbers that are the sum of eight fifth powers in three or more ways.
%H A345611 Sean A. Irvine, <a href="/A345611/b345611.txt">Table of n, a(n) for n = 1..10000</a>
%e A345611 54518 is a term because 54518 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 7^5 + 7^5 + 7^5.
%o A345611 (Python)
%o A345611 from itertools import combinations_with_replacement as cwr
%o A345611 from collections import defaultdict
%o A345611 keep = defaultdict(lambda: 0)
%o A345611 power_terms = [x**5 for x in range(1, 1000)]
%o A345611 for pos in cwr(power_terms, 8):
%o A345611     tot = sum(pos)
%o A345611     keep[tot] += 1
%o A345611     rets = sorted([k for k, v in keep.items() if v >= 3])
%o A345611     for x in range(len(rets)):
%o A345611         print(rets[x])
%Y A345611 Cf. A345578, A345606, A345610, A345612, A345620, A346328.
%K A345611 nonn
%O A345611 1,1
%A A345611 _David Consiglio, Jr._, Jun 20 2021