This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345612 #6 Jul 31 2021 16:17:06 %S A345612 391250,392031,455750,519236,604822,622281,672023,672054,672265, %T A345612 673554,697492,703978,707368,730259,763292,857761,893605,893636, %U A345612 893816,893847,894027,894058,894452,894628,896729,897151,901380,903839,909124,909597,910411,911403 %N A345612 Numbers that are the sum of eight fifth powers in four or more ways. %H A345612 Sean A. Irvine, <a href="/A345612/b345612.txt">Table of n, a(n) for n = 1..10000</a> %e A345612 392031 is a term because 392031 = 1^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5. %o A345612 (Python) %o A345612 from itertools import combinations_with_replacement as cwr %o A345612 from collections import defaultdict %o A345612 keep = defaultdict(lambda: 0) %o A345612 power_terms = [x**5 for x in range(1, 1000)] %o A345612 for pos in cwr(power_terms, 8): %o A345612 tot = sum(pos) %o A345612 keep[tot] += 1 %o A345612 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345612 for x in range(len(rets)): %o A345612 print(rets[x]) %Y A345612 Cf. A345579, A345607, A345611, A345613, A345621, A346329. %K A345612 nonn %O A345612 1,1 %A A345612 _David Consiglio, Jr._, Jun 20 2021