cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345612 Numbers that are the sum of eight fifth powers in four or more ways.

This page as a plain text file.
%I A345612 #6 Jul 31 2021 16:17:06
%S A345612 391250,392031,455750,519236,604822,622281,672023,672054,672265,
%T A345612 673554,697492,703978,707368,730259,763292,857761,893605,893636,
%U A345612 893816,893847,894027,894058,894452,894628,896729,897151,901380,903839,909124,909597,910411,911403
%N A345612 Numbers that are the sum of eight fifth powers in four or more ways.
%H A345612 Sean A. Irvine, <a href="/A345612/b345612.txt">Table of n, a(n) for n = 1..10000</a>
%e A345612 392031 is a term because 392031 = 1^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5.
%o A345612 (Python)
%o A345612 from itertools import combinations_with_replacement as cwr
%o A345612 from collections import defaultdict
%o A345612 keep = defaultdict(lambda: 0)
%o A345612 power_terms = [x**5 for x in range(1, 1000)]
%o A345612 for pos in cwr(power_terms, 8):
%o A345612     tot = sum(pos)
%o A345612     keep[tot] += 1
%o A345612     rets = sorted([k for k, v in keep.items() if v >= 4])
%o A345612     for x in range(len(rets)):
%o A345612         print(rets[x])
%Y A345612 Cf. A345579, A345607, A345611, A345613, A345621, A346329.
%K A345612 nonn
%O A345612 1,1
%A A345612 _David Consiglio, Jr._, Jun 20 2021