This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345613 #6 Jul 31 2021 16:17:10 %S A345613 926372,952653,993573,1133343,1414591,1431366,1431397,1447327,1597928, %T A345613 1637020,1663391,1697685,1876624,1933329,1992377,1993376,1993666, %U A345613 2033328,2091879,2175912,2182160,2231110,2280544,2280575,2280786,2281567,2283668,2329602,2345563 %N A345613 Numbers that are the sum of eight fifth powers in five or more ways. %H A345613 Sean A. Irvine, <a href="/A345613/b345613.txt">Table of n, a(n) for n = 1..10000</a> %e A345613 952653 is a term because 952653 = 2^5 + 2^5 + 6^5 + 7^5 + 9^5 + 12^5 + 12^5 + 13^5 = 2^5 + 2^5 + 7^5 + 7^5 + 9^5 + 11^5 + 11^5 + 14^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 3^5 + 4^5 + 4^5 + 6^5 + 10^5 + 10^5 + 13^5 + 13^5 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 + 15^5. %o A345613 (Python) %o A345613 from itertools import combinations_with_replacement as cwr %o A345613 from collections import defaultdict %o A345613 keep = defaultdict(lambda: 0) %o A345613 power_terms = [x**5 for x in range(1, 1000)] %o A345613 for pos in cwr(power_terms, 8): %o A345613 tot = sum(pos) %o A345613 keep[tot] += 1 %o A345613 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345613 for x in range(len(rets)): %o A345613 print(rets[x]) %Y A345613 Cf. A345580, A345608, A345612, A345614, A345622, A346330. %K A345613 nonn %O A345613 1,1 %A A345613 _David Consiglio, Jr._, Jun 20 2021