cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345625 Numbers that are the sum of nine fifth powers in eight or more ways.

This page as a plain text file.
%I A345625 #6 Jul 31 2021 16:09:22
%S A345625 1431398,1431640,1531397,1952415,1969221,2247917,2530399,2596936,
%T A345625 2652563,2652860,2736790,2851254,2965588,3088909,3148674,3273590,
%U A345625 3297416,3329120,3329362,3332244,3336895,3345442,3345653,3353186,3361614,3362217,3364738,3378178,3553641
%N A345625 Numbers that are the sum of nine fifth powers in eight or more ways.
%H A345625 Sean A. Irvine, <a href="/A345625/b345625.txt">Table of n, a(n) for n = 1..10000</a>
%e A345625 1431640 is a term because 1431640 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
%o A345625 (Python)
%o A345625 from itertools import combinations_with_replacement as cwr
%o A345625 from collections import defaultdict
%o A345625 keep = defaultdict(lambda: 0)
%o A345625 power_terms = [x**5 for x in range(1, 1000)]
%o A345625 for pos in cwr(power_terms, 9):
%o A345625     tot = sum(pos)
%o A345625     keep[tot] += 1
%o A345625     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345625     for x in range(len(rets)):
%o A345625         print(rets[x])
%Y A345625 Cf. A345592, A345616, A345624, A345626, A345640, A346343.
%K A345625 nonn
%O A345625 1,1
%A A345625 _David Consiglio, Jr._, Jun 20 2021