This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345629 #6 Jul 31 2021 16:25:26 %S A345629 28608832,35663099,36090526,36620574,46998599,51095638,52541851, %T A345629 54233651,54827543,54886349,61263643,61634374,63514593,64810976, %U A345629 65198607,66708676,67887843,70979107,72970305,74002457,74115801,74132607,74487093,75044651,75378359 %N A345629 Numbers that are the sum of seven fifth powers in seven or more ways. %H A345629 Sean A. Irvine, <a href="/A345629/b345629.txt">Table of n, a(n) for n = 1..10000</a> %e A345629 35663099 is a term because 35663099 = 1^5 + 9^5 + 16^5 + 17^5 + 24^5 + 24^5 + 28^5 = 2^5 + 3^5 + 17^5 + 23^5 + 24^5 + 24^5 + 26^5 = 2^5 + 10^5 + 15^5 + 17^5 + 23^5 + 23^5 + 29^5 = 4^5 + 8^5 + 13^5 + 19^5 + 21^5 + 27^5 + 27^5 = 4^5 + 11^5 + 13^5 + 19^5 + 20^5 + 22^5 + 30^5 = 5^5 + 6^5 + 19^5 + 19^5 + 20^5 + 20^5 + 30^5 = 7^5 + 9^5 + 12^5 + 18^5 + 18^5 + 27^5 + 28^5. %o A345629 (Python) %o A345629 from itertools import combinations_with_replacement as cwr %o A345629 from collections import defaultdict %o A345629 keep = defaultdict(lambda: 0) %o A345629 power_terms = [x**5 for x in range(1, 1000)] %o A345629 for pos in cwr(power_terms, 7): %o A345629 tot = sum(pos) %o A345629 keep[tot] += 1 %o A345629 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345629 for x in range(len(rets)): %o A345629 print(rets[x]) %Y A345629 Cf. A345573, A345609, A345615, A345630, A345721, A346284. %K A345629 nonn %O A345629 1,1 %A A345629 _David Consiglio, Jr._, Jun 22 2021