cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345633 Sum of terms of odd index in the binomial decomposition of n^(n-1).

Original entry on oeis.org

0, 1, 4, 36, 272, 4400, 51012, 1188544, 18640960, 567108864, 11225320100, 421504185344, 10079828372880, 450353989316608, 12627774819845668, 654244800082329600, 21046391759976988928, 1240529732459024678912, 45032132922921758270916, 2975557672677668838178816
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2021

Keywords

Comments

When writing n^(n-1) (A000169) as a sum of powers of n using the binomial theorem, one can separately sum the even and the odd powers of n. This is the odd part. See the Formula section.

Crossrefs

Cf. A345632 (even part).

Programs

  • Mathematica
    Table[Plus @@ Table[(n - 1)^(2 k + 1) Binomial[n - 1, 2 k + 1], {k, 0, Floor[(n - 1)/2]}], {n, 1, 21}]

Formula

a(n+1) = Sum_{k=0..floor((n-1)/2)} n^(2k+1)*binomial(n, 2k+1).
a(n+1) = ((1 + n)^n - (1 - n)^n)/2.
Showing 1-1 of 1 results.