This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345636 #6 Jul 31 2021 15:58:22 %S A345636 55543,55574,55785,56566,58667,63318,72349,73002,85186,86506,87287, %T A345636 87529,88310,103134,111498,113599,114591,118250,119031,120351,120382, %U A345636 120593,121374,123475,128126,134475,134878,135201,137157,142008,142219,143000,143211,143506 %N A345636 Numbers that are the sum of ten fifth powers in four or more ways. %H A345636 Sean A. Irvine, <a href="/A345636/b345636.txt">Table of n, a(n) for n = 1..10000</a> %e A345636 55574 is a term because 55574 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5. %o A345636 (Python) %o A345636 from itertools import combinations_with_replacement as cwr %o A345636 from collections import defaultdict %o A345636 keep = defaultdict(lambda: 0) %o A345636 power_terms = [x**5 for x in range(1, 1000)] %o A345636 for pos in cwr(power_terms, 10): %o A345636 tot = sum(pos) %o A345636 keep[tot] += 1 %o A345636 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345636 for x in range(len(rets)): %o A345636 print(rets[x]) %Y A345636 Cf. A345597, A345621, A345635, A345637, A346349. %K A345636 nonn %O A345636 1,1 %A A345636 _David Consiglio, Jr._, Jun 20 2021