cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345638 Numbers that are the sum of ten fifth powers in six or more ways.

This page as a plain text file.
%I A345638 #6 Jul 31 2021 15:58:41
%S A345638 392095,392306,399839,406802,407583,434676,491643,492063,520261,
%T A345638 521106,538323,538534,540927,553325,555098,563526,582089,592398,
%U A345638 608190,611072,614196,637833,639903,640715,640895,640926,640957,641106,643671,653523,655327,656616
%N A345638 Numbers that are the sum of ten fifth powers in six or more ways.
%H A345638 Sean A. Irvine, <a href="/A345638/b345638.txt">Table of n, a(n) for n = 1..10000</a>
%e A345638 392306 is a term because 392306 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 1^5 + 2^5 + 3^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 2^5 + 2^5 + 3^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5.
%o A345638 (Python)
%o A345638 from itertools import combinations_with_replacement as cwr
%o A345638 from collections import defaultdict
%o A345638 keep = defaultdict(lambda: 0)
%o A345638 power_terms = [x**5 for x in range(1, 1000)]
%o A345638 for pos in cwr(power_terms, 10):
%o A345638     tot = sum(pos)
%o A345638     keep[tot] += 1
%o A345638     rets = sorted([k for k, v in keep.items() if v >= 6])
%o A345638     for x in range(len(rets)):
%o A345638         print(rets[x])
%Y A345638 Cf. A345599, A345623, A345637, A345639, A346351.
%K A345638 nonn
%O A345638 1,1
%A A345638 _David Consiglio, Jr._, Jun 20 2021