This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345640 #6 Jul 31 2021 15:58:51 %S A345640 944383,953139,953414,985453,1118585,1151438,1185375,1192180,1198879, %T A345640 1206546,1209912,1216569,1217172,1218912,1223321,1225398,1226654, %U A345640 1234631,1241834,1242437,1251195,1251406,1252123,1259685,1265563,1265594,1267937,1275375,1281736 %N A345640 Numbers that are the sum of ten fifth powers in eight or more ways. %H A345640 Sean A. Irvine, <a href="/A345640/b345640.txt">Table of n, a(n) for n = 1..1000</a> %e A345640 953139 is a term because 953139 = 1^5 + 1^5 + 1^5 + 3^5 + 8^5 + 10^5 + 10^5 + 10^5 + 12^5 + 13^5 = 1^5 + 2^5 + 2^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 12^5 + 14^5 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 12^5 + 12^5 + 13^5 = 2^5 + 2^5 + 3^5 + 3^5 + 7^5 + 7^5 + 9^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 11^5 + 11^5 + 12^5 + 13^5 = 2^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 10^5 + 10^5 + 13^5 + 13^5 = 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 + 15^5. %o A345640 (Python) %o A345640 from itertools import combinations_with_replacement as cwr %o A345640 from collections import defaultdict %o A345640 keep = defaultdict(lambda: 0) %o A345640 power_terms = [x**5 for x in range(1, 1000)] %o A345640 for pos in cwr(power_terms, 10): %o A345640 tot = sum(pos) %o A345640 keep[tot] += 1 %o A345640 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A345640 for x in range(len(rets)): %o A345640 print(rets[x]) %Y A345640 Cf. A345601, A345625, A345639, A345641, A346353. %K A345640 nonn %O A345640 1,1 %A A345640 _David Consiglio, Jr._, Jun 20 2021