A345654 Numbers with five neighboring primes on the hexagonal spiral board of odd numbers.
1, 15, 45, 63, 165, 195, 231, 459, 693, 909, 969, 1299, 1785, 2709, 3699, 4131, 4449, 5145, 7041, 8541, 10209, 16065, 20355, 22569, 27489, 28299, 38151, 47745, 49365, 49959, 58479, 77619, 81021, 84651, 87555, 92625, 101115, 104181, 107271, 107349, 108225
Offset: 1
Keywords
Examples
1 is a term because five of its six neighbors (3, 5, 7, 9, 11, and 13) are primes; 45 is a term because five of its six neighbors (17, 19, 43, 47, 83, and 85) are primes. A hexagonal spiral board of odd numbers <= 169 is illustrated in the figure below, where terms in the sequence are shown in square brackets and primes in parentheses. . (151)<(149)<-147<--145<--143<--141 / \ / \ 153 (97)<--95<---93<---91<--(89) (139) / / \ \ / / \ \ 155 99 55<--(53)<--51<---49 87 (137) / / / \ \ \ / / / \ \ \ (157) (101) 57 25<--(23)<--21 (47) 85 135 / / / / \ \ \ \ / / / / \ \ \ \ 159 (103) (59) 27 (7)<--(5) (19) [45] (83) 133 / / / / / \ \ \ \ \ / / / / / \ \ \ \ \ 161 105 (61) (29) 9 [1]-->(3) (17) (43) 81 (131) \ \ \ \ \ / / / / \ \ \ \ \ / / / / (163) (107) [63] (31) (11)->(13)->[15] (41) (79) 129 \ \ \ \ / / / \ \ \ \ / / / [165] (109) 65 33--->35-->(37)-->39 77 (127) \ \ \ / / \ \ \ / / (167) 111 (67)-->69-->(71)->(73)-->75 125 \ \ / \ \ / 169 (113)->115-->117-->119-->121-->123
Crossrefs
Cf. A341542.
Programs
-
Python
from sympy import isprime; from math import sqrt, ceil def neib(m): if m == 1: L = [3, 5, 7, 9, 11, 13] elif m == 3: L = [17, 19, 5, 1, 13, 15] else: L = [m for i in range(6)]; n = int(ceil((3+sqrt(6*m+3))/6)) a0=6*n*n-18*n+15; a1=6*n*n-16*n+11; a2=6*n*n-14*n+9; a3=6*n*n-12*n+7; a4=6*n*n-10*n+5; a5=6*n*n-8*n+3; a6=6*n*n-6*n+1 p = 0 if m==a0 else 1 if m>a0 and m
a1 and m a2 and m a3 and m a4 and m a5 and m
Comments