cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345660 Theta series of the canonical laminated lattice LAMBDA_29.

This page as a plain text file.
%I A345660 #14 Sep 24 2023 10:23:45
%S A345660 1,0,0,0,198506,163840,20662272,45481984,745402040,1904738304,
%T A345660 13582315520,32267304960,152158214640,321893203968,1194291679232,
%U A345660 2263580016640,7176091448362
%N A345660 Theta series of the canonical laminated lattice LAMBDA_29.
%C A345660 Theta series is an element of the space of modular forms on Gamma_0(16) of weight 29/2 and dimension 30 over the integers.
%D A345660 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 179.
%H A345660 J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.2307/2007025">Laminated lattices</a>, Annals of Math., 116 (1982), pp. 593-620. A revised version appears as Chapter 6 of "Sphere Packings, Lattices and Groups" by J. H. Conway and N. J. A. Sloane, Springer-Verlag, NY, 1988.
%H A345660 J. H. Conway and N. J. A. Sloane, <a href="/A005135/a005135.png">The "shower" showing containments among the laminated lattices up to dimension 48</a> (Fig 3 from the Annals paper, also Fig. 6.1 in the Sphere packing book).
%H A345660 G. Nebe and N. J. A. Sloane, <a href="https://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/LAMBDA29.html">Home page for this lattice</a>
%H A345660 <a href="/index/La#laminated">Index entries for sequences related to laminated lattices</a>
%e A345660 G.f.: 1 + 198506*q^8 + 163840*q^10 + ...
%o A345660 (Magma)
%o A345660 L := Lattice("Lambda", 29);
%o A345660 T<q> := ThetaSeries(L, 14);
%o A345660 C := Coefficients(T);
%o A345660 [C[2*i-1] : i in [1..8]];
%Y A345660 Cf. A005135, A023942, A008408.
%K A345660 nonn,more
%O A345660 0,5
%A A345660 _Andy Huchala_, Jun 27 2021
%E A345660 a(14)-a(16) from _Robin Visser_, Sep 24 2023