This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345666 #27 Jul 30 2021 09:17:22 %S A345666 12,15,27,110,117,119,123,129,141,143,147,153,159,161,171,183,189,297, %T A345666 1010,1030,1070,1090,1113,1127,1131,1137,1139,1149,1157,1167,1173, %U A345666 1179,1191,1197,1199,1211,1227,1233,1239,1241,1251,1257,1263,1269,1271,1281,1293 %N A345666 Composite numbers whose largest prime substring is greater than the record of all previous terms. %e A345666 a(1)=12 is the first composite containing a prime substring. Its largest prime substring is A345667(1)=2. It is the first nonzero composite index of A047814. %t A345666 lst={};max=m=0;Do[If[!PrimeQ@n,If[IntegerQ[s=Max@Select[FromDigits/@Subsequences@IntegerDigits@n,PrimeQ]],m=s]];If[m>max,max=m;AppendTo[lst,n]],{n,10000}];lst (* _Giorgos Kalogeropoulos_, Jun 25 2021 *) %o A345666 (Python) %o A345666 def trojan_composites(limit_maxval=None, limit_terms=None, verbose=True): %o A345666 from sympy import isprime %o A345666 num = 1 %o A345666 best = 0 %o A345666 found = [] %o A345666 while (not limit_maxval or num <= limit_maxval) and (not limit_terms or len(found) < limit_terms): %o A345666 num += 1 %o A345666 if not isprime(num): %o A345666 string = str(num) %o A345666 for length in range(len(string), len(str(best)), -1): %o A345666 candidate = max(filter(isprime, {int(string[i:i + length - 1]) for i in range(len(string) - length + 2)}), default=0) %o A345666 if candidate: %o A345666 if candidate > best: %o A345666 best = candidate %o A345666 found.append(num) %o A345666 if verbose: %o A345666 print(num, end=', ', flush=True) %o A345666 break %o A345666 if verbose: %o A345666 print() %o A345666 return found %o A345666 trojan_composites(limit_terms=7) #[12, 15, 27, 110, 117, 119, 123] %Y A345666 Cf. A002808, A047814, A345667 (corresponding prime substrings). %K A345666 nonn,base %O A345666 1,1 %A A345666 _Eyal Gruss_, Jun 21 2021