This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345675 #20 Nov 01 2021 01:17:09 %S A345675 35,14315,22399,35711,455891,881809,1198159,1917071,2287987,3310037, %T A345675 4464941,11029439,12190061,13325753,17832803,33012941,33296147, %U A345675 37814849,44986423,74437181,76911149,82873661,91909571,98859851,108266171,128008159,128981243,132391409 %N A345675 Numbers m such that D_{m-1} is the smallest base b > 1 for which b^{m-1} == 1 (mod m), where D_k is the denominator (A027642) of Bernoulli number B_k. %C A345675 These are numbers m such that A027642(m-1) = A105222(m). %C A345675 The corresponding bases of these pseudoprimes are 6, 6, 42, 66, 66, 46410, 3318, 66, 42, 30, 330, 6, 330, 61410, 6, 330, 1074, 510, 3318, 330, 7890, 330, 66, 12606, 66, 42, 6, 510, ... %t A345675 Den[n_] := Times @@ (1 + Select[Divisors[n], PrimeQ[# + 1] &]); q[k_] := Module[{m = 2, d = Den[k - 1]}, If[PowerMod[d, k - 1, k] != 1, False, While[m < d && PowerMod[m, k - 1, k] != 1, m++]; m == d]]; Select[Range[3, 10^6, 2], q] (* _Amiram Eldar_, Sep 04 2021 *) %o A345675 (PARI) f(n) = my(m=2); while(Mod(m, n)^(n-1)!=1, m++); m; %o A345675 isok(m) = f(m) == denominator(bernfrac(m-1)); \\ _Michel Marcus_, Sep 04 2021 %Y A345675 Cf. A027642, A105222, A121707, A316940. %K A345675 nonn %O A345675 1,1 %A A345675 _Thomas Ordowski_, Sep 04 2021 %E A345675 More terms from _Amiram Eldar_, Sep 04 2021