cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345691 For 1<=x<=n, 1<=y<=n, write gcd(x,y) = u*x+v*y with u,v minimal; a(n) = n^4*s, where s is the population variance of the values of u^2+v^2.

This page as a plain text file.
%I A345691 #9 Jun 25 2021 01:53:19
%S A345691 0,0,14,48,1266,1988,21514,49392,171032,242964,882708,1487996,3650020,
%T A345691 4913620,9374594,14382448,29859148,38410016,71427550,97525500,
%U A345691 147544988,186821472,320133640,399015644,605818854,740618592,1061345430,1349418108,2017326672,2390222900
%N A345691 For 1<=x<=n, 1<=y<=n, write gcd(x,y) = u*x+v*y with u,v minimal; a(n) = n^4*s, where s is the population variance of the values of u^2+v^2.
%C A345691 The factor n^4 is to ensure that a(n) is an integer.
%C A345691 A345434(n) = n^2*mu where mu is the mean of the values of u^2+v^2.
%C A345691 s^(1/4) appears to grow linearly with n.
%o A345691 (Python)
%o A345691 from statistics import pvariance
%o A345691 from sympy.core.numbers import igcdex
%o A345691 def A345691(n): return pvariance(n**2*(u**2+v**2) for u, v, w in (igcdex(x,y) for x in range(1,n+1) for y in range(1,n+1)))
%Y A345691 Cf. A345434, A345687, A345688, A345689, A345690.
%K A345691 nonn
%O A345691 1,3
%A A345691 _Chai Wah Wu_, Jun 24 2021