This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345704 #16 Dec 23 2024 14:53:46 %S A345704 282,840,1596,1794,1920,2496,2928,3108,3522,3540,3594,4008,4188,4602, %T A345704 4620,4998,5268,5862,6060,6708,6888,7086,7788,7968,8382,8400,9048, %U A345704 9840,10362,10542,10920,11100,11568,12126,12162,12180,13422,14106,14322,14394,14880,15348 %N A345704 Zumkeller numbers k (A083207) such that the next Zumkeller number is k + 12. %C A345704 Frank Buss and _T. D. Noe_ conjectured (see A083207) and _Robert Gerbicz_ proved that the largest possible gap between Zumkeller numbers is 12 (SeqFan post, 2010). A proof was also published by Mahanta et al. (2020). %H A345704 Robert Israel, <a href="/A345704/b345704.txt">Table of n, a(n) for n = 1..648</a> %H A345704 Robert Gerbicz, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2010-July/005225.html">A083207 On an observation of Frank Buss</a>, posts to the SeqFan list, July 2010. %H A345704 Pankaj Jyoti Mahanta, Manjil P. Saikia and Daniel Yaqubi, <a href="https://doi.org/10.1016/j.jnt.2020.05.003">Some properties of Zumkeller numbers and k-layered numbers</a>, Journal of Number Theory, Vol. 217 (2020), pp. 218-236. %e A345704 282 is a term since it is a Zumkeller number, and the next Zumkeller number is 282 + 12 = 294. %p A345704 iszum:= proc(n) local D,s,P,d; %p A345704 D:= numtheory:-divisors(n); %p A345704 s:= convert(D,`+`); %p A345704 if s::odd then return false fi; %p A345704 P:= mul(1+x^d,d=D); %p A345704 coeff(P,x,s/2) > 0 %p A345704 end proc: %p A345704 last:= 6: R:= NULL: count:= 0: %p A345704 for i from 7 while count < 60 do %p A345704 if iszum(i) then %p A345704 if i-last = 12 then R:= R, last; count:= count+1 fi; %p A345704 last:= i; %p A345704 fi %p A345704 od: %p A345704 R; # _Robert Israel_, Feb 13 2023 %t A345704 zumQ[n_] := Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; z = Select[Range[5000], zumQ]; z[[Position[Differences[z], 12] // Flatten]] %o A345704 (Python) %o A345704 from itertools import count, islice %o A345704 from sympy import divisors %o A345704 def A345704_gen(startvalue=1): # generator of terms >= startvalue %o A345704 m = -20 %o A345704 for n in count(max(startvalue,1)): %o A345704 d = divisors(n) %o A345704 s = sum(d) %o A345704 if s&1^1 and n<<1<=s: %o A345704 d = d[:-1] %o A345704 s2, ld = (s>>1)-n, len(d) %o A345704 z = [[0 for _ in range(s2+1)] for _ in range(ld+1)] %o A345704 for i in range(1, ld+1): %o A345704 y = min(d[i-1], s2+1) %o A345704 z[i][:y] = z[i-1][:y] %o A345704 for j in range(y,s2+1): %o A345704 z[i][j] = max(z[i-1][j],z[i-1][j-y]+y) %o A345704 if z[i][s2] == s2: %o A345704 if m == n-12: %o A345704 yield m %o A345704 m = n %o A345704 break %o A345704 A345704_list = list(islice(A345704_gen(),10)) # _Chai Wah Wu_, Feb 13 2023 %Y A345704 Cf. A083207, A179529, A328327. %K A345704 nonn %O A345704 1,1 %A A345704 _Amiram Eldar_, Jun 24 2021