This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345708 #25 Aug 15 2025 09:10:54 %S A345708 1,1,3,4,5,1,7,8,9,10,11,3,13,14,15,16,17,18,19,4,21,22,23,1,25,26,27, %T A345708 28,29,5,31,32,33,34,35,36,37,38,39,40,41,6,43,44,45,46,47,48,49,50, %U A345708 51,52,53,54,55,7,57,58,59,3,61,62,63,64,65,66,67,68,69 %N A345708 a(n) is the least positive number starting an interval of consecutive integers whose product of elements is n. %C A345708 This sequence is similar to A118235; here we multiply, there we add. %C A345708 a(n) is the index of the first row of A068424 (interpreted as a square array) containing n. %C A345708 If n is the product of k consecutive integers, then k! divides n. %H A345708 Rémy Sigrist, <a href="/A345708/b345708.txt">Table of n, a(n) for n = 1..10000</a> %F A345708 a(n) = 1 iff n is a factorial number (A000142). %F A345708 a(n) <> 2. %F A345708 a(n) = 3 iff n >= 3 and n belongs to A001710. %F A345708 a(n) <= n. %F A345708 a(p! / (n-1)!) = n for any n >= 3 and any prime number p >= n. %F A345708 a(q) = q for any prime power q > 2. %F A345708 a(n) = n for any odd number n. %F A345708 a(n) < n iff n belongs to A045619. %e A345708 The square array A068424(n, k) begins: %e A345708 n\k| 1 2 3 4 5 6 %e A345708 ---+--------------------------------------- %e A345708 1| 1 2 6 24 120 720 %e A345708 2| 2 6 24 120 720 5040 %e A345708 3| 3 12 60 360 2520 20160 %e A345708 4| 4 20 120 840 6720 60480 %e A345708 - so a(1) = a(2) = a(6) = a(24) = a(120) = a(720) = 1, %e A345708 a(3) = a(12) = a(60) = a(360) = 3, %e A345708 a(4) = a(20) = 4. %o A345708 (PARI) a(n) = { fordiv (n, d, my (r=n); for (k=d, oo, if (r==1, return (d), r%k, break, r/=k))) } %o A345708 (PARI) a(n) = { for (i=2, oo, if (n%i!, forstep (j=i-1, 2, -1, my (d=sqrtnint(n,j)); while (d-1 && n%(d-1)==0, d--); while (n%d==0, my (r=n); for %o A345708 (k=d, oo, if (r==1, return (if (d==2, 1, d)), r%k, break, r/=k)); d++)); break)); return (n) } %o A345708 (Python) %o A345708 from sympy import divisors %o A345708 def a(n): %o A345708 if n%2 == 0: return n %o A345708 divs = divisors(n) %o A345708 for i, d in enumerate(divs[:len(divs)//2]): %o A345708 p = lastj = d %o A345708 for j in divs[i+1:]: %o A345708 if p >= n or j - lastj > 1: break %o A345708 p, lastj = p*j, j %o A345708 if p == n: return d %o A345708 return n %o A345708 print([a(n) for n in range(1, 70)]) # _Michael S. Branicky_, Jun 29 2021 %Y A345708 Cf. A000142, A001710, A045619, A068424, A118235, A246655. %K A345708 nonn %O A345708 1,3 %A A345708 _Rémy Sigrist_, Jun 24 2021