This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345721 #9 Jul 31 2021 16:37:43 %S A345721 1184966816,1700336000,1717860100,1972000800,2229475325,2295937600, %T A345721 2396275200,2548597632,2625460992,2886251808,3217068800,3697267200, %U A345721 3729261536,3765398725,4046532448,4165116967,4246566632,4286704224,4335900525,4489548050 %N A345721 Numbers that are the sum of six fifth powers in seven or more ways. %H A345721 Sean A. Irvine, <a href="/A345721/b345721.txt">Table of n, a(n) for n = 1..4091</a> %e A345721 1700336000 is a term because 1700336000 = 4^5 + 17^5 + 31^5 + 37^5 + 43^5 + 68^5 = 6^5 + 9^5 + 10^5 + 23^5 + 60^5 + 62^5 = 6^5 + 14^5 + 16^5 + 50^5 + 50^5 + 64^5 = 7^5 + 25^5 + 30^5 + 54^5 + 56^5 + 58^5 = 8^5 + 21^5 + 23^5 + 27^5 + 57^5 + 64^5 = 9^5 + 21^5 + 22^5 + 29^5 + 53^5 + 66^5 = 13^5 + 32^5 + 35^5 + 38^5 + 45^5 + 67^5. %o A345721 (Python) %o A345721 from itertools import combinations_with_replacement as cwr %o A345721 from collections import defaultdict %o A345721 keep = defaultdict(lambda: 0) %o A345721 power_terms = [x**5 for x in range(1, 1000)] %o A345721 for pos in cwr(power_terms, 6): %o A345721 tot = sum(pos) %o A345721 keep[tot] += 1 %o A345721 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345721 for x in range(len(rets)): %o A345721 print(rets[x]) %Y A345721 Cf. A345564, A345629, A345720, A345722, A346362. %K A345721 nonn %O A345721 1,1 %A A345721 _David Consiglio, Jr._, Jun 24 2021