This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345731 #45 Aug 04 2025 17:19:45 %S A345731 1,2,4,7,12,18,24,34,45,57,71,86,105,126,148 %N A345731 Additive bases: a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of distinct elements) of which are distinct. %C A345731 Such sets are known as weak Sidon sets, weak B_2 sets, or well-spread sequences. %C A345731 n - 1 <= a(n) <= A003022(n). - _Michael S. Branicky_, Jun 25 2021 %D A345731 Alison M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, 2nd ed., 2013. See Section 2.3. %D A345731 Xiaodong Xu, Meilian Liang, and Zehui Shao, On weak Sidon sequences, The Journal of Combinatorial Mathematics and Combinatorial Computing (2014), 107--113 %H A345731 A. Lladó, <a href="https://doi.org/10.1016/j.ejc.2007.04.006">Largest cliques in connected supermagic graphs</a>, European Journal of Combinatorics, Vol. 28, No. 8 (2007), 2240-2247. %e A345731 a(6)=12 because 0-1-2-4-7-12 (0-5-8-10-11-12) resp. 0-1-2-6-9-12 (0-3-6-10-11-12) are shortest weak Sidon sets of size 6. %e A345731 a(16)=148: [0, 3, 5, 6, 32, 49, 59, 68, 93, 106, 118, 126, 130, 134, 141, 148]. - _Zhao Hui Du_, Jul 27 2025 %t A345731 a[n_Integer?NonNegative] := Module[{k = n - 1}, While[SelectFirst[Subsets[Range[0, k - 1], {n - 1}], Length@Union[Plus @@@ Subsets[#~Join~{k}, {2}]] >= (n*(n - 1))/2 &] === Missing["NotFound"], k++]; k]; %t A345731 Table[a[n], {n, 2, 8}] (* _Robert P. P. McKone_, Nov 05 2023 *) %o A345731 (Python) %o A345731 from itertools import combinations, count %o A345731 def a(n): %o A345731 for k in count(n-1): %o A345731 for c in combinations(range(k), n-1): %o A345731 c = c + (k,) %o A345731 ss = set() %o A345731 for s in combinations(c, 2): %o A345731 if sum(s) in ss: break %o A345731 else: ss.add(sum(s)) %o A345731 if len(ss) == n*(n-1)//2: return k # use (k, c) for sets %o A345731 print([a(n) for n in range(2, 9)]) # _Michael S. Branicky_, Jun 25 2021 %Y A345731 See A003022, A004133, and A004135 for other versions. %K A345731 nonn,hard,more,nice %O A345731 2,2 %A A345731 _Bernd Mulansky_, Jun 25 2021 %E A345731 a(16) corrected and a(17) deleted by _Zhao Hui Du_, Jul 27 2025