A345737 Decimal expansion of the initial angle in radians above the horizon that maximizes the length of a projectile's trajectory.
9, 8, 5, 5, 1, 4, 7, 3, 7, 8, 6, 2, 3, 1, 5, 4, 6, 2, 1, 1, 4, 9, 2, 8, 5, 3, 7, 2, 5, 7, 3, 0, 4, 6, 3, 8, 7, 7, 2, 4, 7, 2, 2, 0, 5, 9, 6, 7, 4, 2, 9, 6, 4, 8, 1, 2, 7, 8, 4, 5, 1, 1, 4, 0, 3, 2, 8, 2, 9, 5, 2, 7, 0, 5, 2, 0, 8, 0, 5, 3, 5, 7, 2, 5, 7, 1, 5
Offset: 0
Examples
0.98551473786231546211492853725730463877247220596742...
References
- Thomas Szirtes, Applied Dimensional Analysis and Modeling, Butterworth-Heinemann, 2007, p. 578.
Links
- Joshua Cooper and Anton Swifton, Throwing a ball as far as possible, revisited, The American Mathematical Monthly, Vol. 124, No. 10 (2017), pp. 955-959; arXiv preprint, arXiv:1611.02376 [math.HO], 2016.
- Haiduke Sarafian, On projectile motion, The Physics Teacher, Vol. 37, No. 2 (1999), pp. 86-88.
- Ju Yan-Qing, Projectile motion path length and initial projectile angle, Journal of Science of Teachers' College and University, Vol. 3 (2005), pp. 49-51.
Programs
-
Maple
Digits:=100:fsolve(tan(x)=sinh(csc(x)),x=0..1); (# Robert FERREOL, Jun 17 2025)
-
Mathematica
RealDigits[ArcCsc[x /. FindRoot[x == Coth[x], {x, 1}, WorkingPrecision -> 120]], 10, 100][[1]]
-
PARI
solve(x=0,1,my(s=sin(x)); s*atanh(s)-1) \\ Charles R Greathouse IV, Sep 18 2024
-
PARI
asin(solve(u=.5, 1, tanh(1/u)-u)) \\ Charles R Greathouse IV, Sep 18 2024
Formula
Equals arccsc(u) where u is the root of coth(x) = x (A085984).
Positive root of tan(x) = sinh(csc(x)). - Robert FERREOL, Jun 17 2025
Comments