This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345750 #22 Feb 16 2025 08:34:02 %S A345750 1,1,2,9,49,310,2521,25557,290550,3555041,48104901,741103946, %T A345750 12825399313,240202011881,4747281446090,98808864563065, %U A345750 2194031697420057,52582450760730398,1357237338948268649 %N A345750 E.g.f.: Product_{k>=1} (1 + (exp(x) - 1)^k)^(1/k). %C A345750 Stirling transform of A168243. %H A345750 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A345750 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a> %F A345750 E.g.f.: exp( Sum_{k>=1} A048272(k) * (exp(x) - 1)^k / k ). %F A345750 a(n) = Sum_{k=0..n} Stirling2(n,k) * A168243(k). %t A345750 max = 18; Range[0, max]! * CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k)^(1/k), {k, 1, max}], {x, 0, max}], x] (* _Amiram Eldar_, Jun 26 2021 *) %o A345750 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+(exp(x)-1)^k)^(1/k)))) %o A345750 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, -sumdiv(k, d, (-1)^d)*(exp(x)-1)^k/k)))) %Y A345750 Cf. A048272, A048993, A168243, A305550, A305987, A345749, A345751. %K A345750 nonn %O A345750 0,3 %A A345750 _Seiichi Manyama_, Jun 26 2021