cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345756 E.g.f.: Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^(1/k!).

This page as a plain text file.
%I A345756 #14 Feb 16 2025 08:34:02
%S A345756 1,1,4,20,132,1057,10036,110168,1369395,19009207,291638340,4898978911,
%T A345756 89387432140,1760380295559,37222139393757,841009071062929,
%U A345756 20219172890524757,515336552717107810,13879978696592456136,393920374851547833518,11749388855614114735431
%N A345756 E.g.f.: Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^(1/k!).
%C A345756 Stirling transform of A209902.
%H A345756 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A345756 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a>
%F A345756 E.g.f.: exp( Sum_{k>=1} (exp((exp(x) - 1)^k) - 1)/k ).
%F A345756 a(n) = Sum_{k=0..n} Stirling2(n,k) * A209902(k).
%o A345756 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(exp(x)-1)^k)^(1/k!))))
%o A345756 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, (exp((exp(x)-1)^k)-1)/k))))
%Y A345756 Cf. A048993, A140585, A209902, A345757, A345758.
%K A345756 nonn
%O A345756 0,3
%A A345756 _Seiichi Manyama_, Jun 26 2021