This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345758 #15 Feb 16 2025 08:34:02 %S A345758 1,-1,-2,-2,4,63,448,2490,14733,109151,790418,5861623,91442844, %T A345758 1857444743,27708811583,336714649323,6016551711313,167673369006642, %U A345758 4183443404331446,82140898773966502,1493427665082817617,37403762698805913754,1340432910567030307828 %N A345758 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k)^(1/k!). %C A345758 Stirling transform of A345762. %H A345758 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A345758 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a> %F A345758 E.g.f.: exp( -Sum_{k>=1} (exp((exp(x) - 1)^k) - 1)/k ). %F A345758 a(n) = Sum_{k=0..n} Stirling2(n,k) * A345762(k). %o A345758 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-(exp(x)-1)^k)^(1/k!)))) %o A345758 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, (exp((exp(x)-1)^k)-1)/k)))) %Y A345758 Cf. A048993, A345756, A345757, A345762. %K A345758 sign %O A345758 0,3 %A A345758 _Seiichi Manyama_, Jun 26 2021