cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345766 Numbers that are the sum of six cubes in exactly four ways.

This page as a plain text file.
%I A345766 #7 Jul 31 2021 22:49:46
%S A345766 626,830,837,856,873,891,947,954,982,1008,1026,1052,1053,1071,1094,
%T A345766 1097,1106,1109,1134,1143,1150,1153,1172,1195,1208,1227,1234,1253,
%U A345766 1267,1278,1279,1283,1286,1290,1297,1316,1323,1324,1358,1361,1368,1369,1376,1395,1403
%N A345766 Numbers that are the sum of six cubes in exactly four ways.
%C A345766 Differs from A345513 at term 12 because 1045 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 10^3  = 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 9^3  = 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 9^3  = 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3  = 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3.
%H A345766 Sean A. Irvine, <a href="/A345766/b345766.txt">Table of n, a(n) for n = 1..1211</a>
%e A345766 830 is a term because 830 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 6^3 + 6^3.
%o A345766 (Python)
%o A345766 from itertools import combinations_with_replacement as cwr
%o A345766 from collections import defaultdict
%o A345766 keep = defaultdict(lambda: 0)
%o A345766 power_terms = [x**3 for x in range(1, 1000)]
%o A345766 for pos in cwr(power_terms, 6):
%o A345766     tot = sum(pos)
%o A345766     keep[tot] += 1
%o A345766     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345766     for x in range(len(rets)):
%o A345766         print(rets[x])
%Y A345766 Cf. A048931, A344035, A345513, A345767, A345776, A345816.
%K A345766 nonn
%O A345766 1,1
%A A345766 _David Consiglio, Jr._, Jun 26 2021