This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345767 #6 Jul 31 2021 22:49:49 %S A345767 1045,1169,1241,1260,1384,1432,1440,1495,1530,1539,1549,1556,1558, %T A345767 1584,1594,1602,1612,1617,1640,1654,1657,1675,1703,1712,1715,1719, %U A345767 1729,1736,1745,1747,1754,1771,1780,1792,1801,1803,1806,1810,1818,1825,1827,1834,1843 %N A345767 Numbers that are the sum of six cubes in exactly five ways. %C A345767 Differs from A345514 at term 5 because 1377 = 1^3 + 1^3 + 2^3 + 7^3 + 8^3 + 8^3 = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 10^3 = 1^3 + 2^3 + 3^3 + 5^3 + 6^3 + 10^3 = 1^3 + 6^3 + 6^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 8^3 = 3^3 + 4^3 + 5^3 + 6^3 + 6^3 + 9^3. %H A345767 Sean A. Irvine, <a href="/A345767/b345767.txt">Table of n, a(n) for n = 1..1227</a> %e A345767 1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3. %o A345767 (Python) %o A345767 from itertools import combinations_with_replacement as cwr %o A345767 from collections import defaultdict %o A345767 keep = defaultdict(lambda: 0) %o A345767 power_terms = [x**3 for x in range(1, 1000)] %o A345767 for pos in cwr(power_terms, 6): %o A345767 tot = sum(pos) %o A345767 keep[tot] += 1 %o A345767 rets = sorted([k for k, v in keep.items() if v == 5]) %o A345767 for x in range(len(rets)): %o A345767 print(rets[x]) %Y A345767 Cf. A343988, A345514, A345766, A345768, A345777, A345817. %K A345767 nonn %O A345767 1,1 %A A345767 _David Consiglio, Jr._, Jun 26 2021