cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345767 Numbers that are the sum of six cubes in exactly five ways.

This page as a plain text file.
%I A345767 #6 Jul 31 2021 22:49:49
%S A345767 1045,1169,1241,1260,1384,1432,1440,1495,1530,1539,1549,1556,1558,
%T A345767 1584,1594,1602,1612,1617,1640,1654,1657,1675,1703,1712,1715,1719,
%U A345767 1729,1736,1745,1747,1754,1771,1780,1792,1801,1803,1806,1810,1818,1825,1827,1834,1843
%N A345767 Numbers that are the sum of six cubes in exactly five ways.
%C A345767 Differs from A345514 at term 5 because 1377 = 1^3 + 1^3 + 2^3 + 7^3 + 8^3 + 8^3  = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 10^3  = 1^3 + 2^3 + 3^3 + 5^3 + 6^3 + 10^3  = 1^3 + 6^3 + 6^3 + 6^3 + 6^3 + 8^3  = 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 8^3  = 3^3 + 4^3 + 5^3 + 6^3 + 6^3 + 9^3.
%H A345767 Sean A. Irvine, <a href="/A345767/b345767.txt">Table of n, a(n) for n = 1..1227</a>
%e A345767 1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
%o A345767 (Python)
%o A345767 from itertools import combinations_with_replacement as cwr
%o A345767 from collections import defaultdict
%o A345767 keep = defaultdict(lambda: 0)
%o A345767 power_terms = [x**3 for x in range(1, 1000)]
%o A345767 for pos in cwr(power_terms, 6):
%o A345767     tot = sum(pos)
%o A345767     keep[tot] += 1
%o A345767     rets = sorted([k for k, v in keep.items() if v == 5])
%o A345767     for x in range(len(rets)):
%o A345767         print(rets[x])
%Y A345767 Cf. A343988, A345514, A345766, A345768, A345777, A345817.
%K A345767 nonn
%O A345767 1,1
%A A345767 _David Consiglio, Jr._, Jun 26 2021