cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345768 Numbers that are the sum of six cubes in exactly six ways.

This page as a plain text file.
%I A345768 #6 Jul 31 2021 22:49:52
%S A345768 1377,1488,1586,1595,1647,1673,1677,1738,1764,1799,1829,1836,1837,
%T A345768 1862,1881,1890,1911,1953,1955,2007,2011,2014,2018,2025,2044,2070,
%U A345768 2079,2097,2107,2108,2142,2153,2170,2177,2203,2214,2216,2222,2223,2226,2229,2252,2258
%N A345768 Numbers that are the sum of six cubes in exactly six ways.
%C A345768 Differs from A345515 at term 8 because 1710 = 1^3 + 1^3 + 5^3 + 5^3 + 9^3 + 9^3  = 1^3 + 2^3 + 3^3 + 6^3 + 9^3 + 9^3  = 1^3 + 2^3 + 4^3 + 5^3 + 8^3 + 10^3  = 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 11^3  = 2^3 + 2^3 + 2^3 + 7^3 + 7^3 + 10^3  = 2^3 + 3^3 + 4^3 + 4^3 + 6^3 + 11^3  = 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 9^3.
%H A345768 Sean A. Irvine, <a href="/A345768/b345768.txt">Table of n, a(n) for n = 1..1338</a>
%e A345768 1488 is a term because 1488 = 1^3 + 1^3 + 1^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
%o A345768 (Python)
%o A345768 from itertools import combinations_with_replacement as cwr
%o A345768 from collections import defaultdict
%o A345768 keep = defaultdict(lambda: 0)
%o A345768 power_terms = [x**3 for x in range(1, 1000)]
%o A345768 for pos in cwr(power_terms, 6):
%o A345768     tot = sum(pos)
%o A345768     keep[tot] += 1
%o A345768     rets = sorted([k for k, v in keep.items() if v == 6])
%o A345768     for x in range(len(rets)):
%o A345768         print(rets[x])
%Y A345768 Cf. A345175, A345515, A345767, A345769, A345778, A345818.
%K A345768 nonn
%O A345768 1,1
%A A345768 _David Consiglio, Jr._, Jun 26 2021